ML-разработчики Школы анализа данных Яндекса при поддержке Yandex B2B Tech и ДВФУ создали нейросеть, которая умеет определять объём, массу и виды мусора на побережьях водоёмов. Решение успешно применили в экологической экспедиции в Южно-Камчатском федеральном заказнике — особо охраняемой природной территории под управлением ФГБУ "Кроноцкий государственный заповедник" на Дальнем Востоке, а также тестируют в Арктике и других регионах.
Технологию смогут бесплатно использовать службы экологического контроля и волонтёры для более быстрого сбора мусора в труднодоступных местах. Нейросеть анализирует аэрофотоснимки побережья и делит мусор на шесть типов: рыболовные сети, железо, резина, крупный пластик, бетон и древесина.
Решение использовали во время экспедиций на территориях Кроноцкого заповедника и Южно-Камчатского заказника на Камчатке. С помощью нейросети специалисты выяснили, что больше всего побережье загрязнено пластиковой тарой и упаковкой (33-39%), а также отходами промышленного рыболовства (27–29%).
Эксперты рассчитали, что для очистки берега потребуется группа в 20 волонтёров, два самосвала, два квадроцикла и фронтальный погрузчик. Благодаря использованию дронов и нейросети организовать уборку пяти тонн отходов удалось в 4 раза быстрее, чем без использования технологии.
В 2025 году технологию планируют использовать в других национальных парках и заповедниках Дальнего Востока и Арктики. Вывоз отходов из этих регионов особенно затруднен из-за их транспортной доступности, и предполагается решение поможет лучше планировать уборку мусора в таких районах.